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CHAPTER I

S 4 CUURA
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Introduction

In this paper we shall develop two algorithms for curve fitting
which will be adaptive in nature using results from uniform approxi-
mation theory. The organization of this paper is as follows: in this
section we shall review some basic results from uniform appioximation
theory, uniform approximation theory with side conditions, and the
Remes algorithm; in the second section we shall give our curve fitting
algorithms; and in the last section we shall report on our numerical
testing of our algorithms.

Let X be a compact topological space. Let C(X) denote the family
of all real-valued continuous functions defined on X. As is well
known, C(X) is a complete normed linear space under the supremum
(Chebyshev, uniform, max, infinity) norm

[l£]] = max|f(x)]|, £ € c(X).
xeX
Let S be a subset of C(X) and f € C(X) be fixed. Consider

inf ||f - p|| = d.
pes

If there is a p* € S such that |[p* - f|| = d, then p* is called a best
approximation to f from S. For a given subset S, the following ques-

tions may be posed.

1. Does a best approximation exist for a particular f € C(X)?
For each f € C(X)?
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2 If a best approximation does exist, is it unique?

< If a best approximation exists, is there an efficient way of
computing it?

4. Does a best approximation depend continuously on the function
being approximated? (That is, will small errors inevitably
introduced when calculating best approximations prevent an
algorithm from succeeding in converging to something close to

a best approximation?)

In order to answer these questions, we restrict our attention to
the following X and S. Let X be a compact subset of an interval on the
real line, and S be a (finite dimensional) Haar subspace of C(X). That
is, if S has dimension n, then the only function in S having n or more
zeros is the zero function.

For this particular X and S, all of the above questions have been
answered in the affirmative. For theorems and proofs regarding ques-
tions 1, 2 and 4, see for example [3]. We now address ourselves
specifically to question 3. The following theorem characterizing best

uniform approximations will prove useful.

CHARACTERIZATION THEOREM (3, p. 75]. If S has dimension n, then

p* € S is a best approximation to f € C(X) ~ S if and only if there are

n + 1 points, X5 +.., X . in X € [a, b] with x; < x, ., (i=1l,.,n)

i+l
(-1)%, and [A] = |If - p*]| .

such that f(x;) - p(x,;)
Given any f € C(X) ~ S, then any set of n + 1 distinct points from
X determines uniquely a p € S and a A € R so that p(xi) + (-1)ix

= f(x;) since S is a Haar subspace (see [3]). The characterization




§ theorem and the above observation allow us to view the problem of

finding the best approximation to f € C(X) as finding a set (called an

extreme or alternating set) of n + 1 points, {xl, st xn+l}<: X where
X, < X1 i=1, ..., n so that the p and the A determined by the
extreme set have the property that IAI = ”f - p||. In this case, p

must be the best approximation to f from S.

We now describe Remes second (or multiple exchange) algorithm

which calculates the best approximation to f € C(X) ~ S by finding an
extreme set for f. We assume that f is fixed and that an arbitrary
reference set R = {xl, g xn+l} of n + 1 distinct points from X has

been chosen so that X; < x i=1, ..., n, with the added assumption

i+’
that the A determined by this reference set is not zero. Since f ¢ S,
and S has only dimension n, such a set may always be readily found.

We begin each iteration by computing the p and ) associated with

the reference set R. Let o(x) = f(x) - p(x). Since o(xi) = (-1)"A
‘.' with X # 0, 0(x) changes sign from one extreme point to the next. If
[xi, xi+lJ C X, then since f and p are both continuous o has a zero
in [xi. xi+1]' call it z;. If [xi, xi+l] ¢ X, let zi=min{x€.x: X > %,

and o(x;)+0(x) < 0}. set z; = min{x € X}, z 4 - max{x € X}. (It is

possible that z_ =

i ® Zaap0 although this will present no difficulty as

will become clear later).

Now we construct a new reference set Y = {yl, } C X of

s Yns1
distinct points so that the function o(x) still alternates in sign,

that is O(Yi)'o(y1+1) <O fork ®hy covy Ny |°(Y1)l.l lo(xi)l for
i=1, ..., n+1, and for some k, k = 1, ..., n + 1 |oly)|= ||f-p] .
We first find a trial reference set Y = (;1, cvii ;;*1} by choosing ;i

to be a point in [z;_,, z;1 N X where o(x)*(sign(o(x;))) attains its




maximum on [zi-l' zi]IT X. If there is a k such that lo(;k)l = |I£-p|l »
then we set Y = Y. Otherwise, let y* be a point in X so that |o(y#*)]|
=||f - p|| . We form Y be adding y* to ¥ and removing one of the ;i's so
that Y is still ordered and o(x) alternates in sign on Y. This may be

accomplished as follows. If y* € (;k’ )N X, choose j to be either

"
Ykl
k or k+l so that U(;j) is of the same sign as o(y*). Then replace yj

by y* to form Y. If y* < ;1’ eliminate ;n+l (by the way ;l was chosen,
it must be the case that sign(c(yl)) = -sign(o(y + 1)). Similarly, if
y* > ;n+l’ eliminate ;l'

If the new reference set Y is the same as the reference set from
the last iteration, R, then it is necessarily true that |A| = [|f - ol »
and from the Characterization theorem, p must be the best approximation
to f from S, and we terminate the algorithm. If Y # R, then we
iterate again, substituting our new reference set Y for the old refer-
ence set R. The exchange procedure outlined above insures that as long
as the A determined by the initial reference set is non-zero then at
each successive iteration, the magnitude of the present A is strictly
greater than the magnitude of the XA in the preceding iteration (see [3])

It can be shown [6, p. 108] that the above algorithm does converge
(uniformly) to the best approximation to f from S. In fact, under
stronger hypotheses, the convergence is quadratic [6, p. 111].

We may extend these results by forcing the approximation functions
to satisfy certain side conditions. We now consider two such exten-
sions. First, we consider imposing interpolatory constraints on the
approximating functions and their derivatives, then we shall consider
restricting the range of the approximating functions. In both cases,

if we make strong enough assumptions on the structure of the subspace S,




the questions of existence, uniqueness and continuous dependence on
the data can be affirmatively answered (see [5] for interpolatory
constraints; see [8] for restricted range). Moreover, in both cases,
the Remes algorithm c;n be extended to effectively compute best
approximations from these new approximation classes.

In order to consider the interpolatory constraint problem we must
first define an extended Haar system. We follow the notation in [5].
Let {ui(t)}2=l be a family of functions in C[a, b] (with each suffi-
ciently differentiable so that what follows is well defined) and

{ti}2=l<: [a, b] be such that a < t; <t, < ... <t <b. Define

- 2 n
N N N
ul(tl) ul(fz) B ul(tn)
Ls+003n
®(? i = : "
» (tl,...,tn) . : ”
Bt Elr) . HAe)
where for fixed j
1 _ “i(tj) if T4a1 7 %
ke 22 w, M) 1f e, =t = =t
S Jon " e~ 0= S

1 <4i<n. The functions {ui(t)}ri‘=1 will be called an extended
Chebyshev system of order v on [a, b] provided u; € C“-l[a, b1,

2R ey B @04

u*(t' ceey nt ) > 0
1, sevy n

for all choices t; < t, < ... <t , t, € [a, b], where equality occurs

in groups of at most v consecutive t; values. An n-dimensional subspace




-

M of C[a, b] is said to be an extended Haar subspace of order v,
Vv < n, provided that there exists a basis for M which is an extended
Chebyshev system of order v on [a, b].

We may state the interpolatory constraint problem as follows.
Let M be an n-dimensional extended Haar subspace of order v (on

k i
[a, bl). Let {xi}i=1C X C [a, b] satisfy X, < Xy € aee <Xy and
let (mi}t_l be a set of positive integers such that max (m,) - 1
1<i<k
k
< v, and Z m; =m <n. We assume X contains at least n - m + k + 1
i=1

points. Let {aij}k’mi-l

i=1,5=0 be a set of m real numbers and define

S={p€M: p(])(xi) = a4, l<i<kand 0<j < m, - 1}.

The interpolating constraint problem then is to find best approximations

to functions in the class

E(x) = {f € c(x) : f(xi) = a0 1 <i<k}

i

from the class S.

The Remes algorithm may be extended in the following manner to

‘compute interpolatory approximations. Let f € &(x), {xi}§=l’

k k,mj-1 g
{mi}i=l and {aij}i=1,j=0 be as above. Let R {tys oons tn+l}C: X
be such that t; < t, < ... <t .., and each x; is repeated in R m;
k
times. Moreover, if t € R~ éilxi, then t, ) < ty < il Let
k
{iz}:=T*l be such that (tig}:;T+l= R~ }{1xi. It can be shown (see

[5]) that there exist a unique p € S and a real number A satisfying




and
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We assume that R is initially chosen so that IXI > 0
Next we perform an exchange on the reference set R to form a new

reference set Y C X with the properties that each s is repeated in Y

m; times, that there is a y* € Y such that [£(y*) - ply®)| = ||£-p]| »
k
and if (t. }k_ = Y a U x; then
ig72=1 sl 3

"
) - p(ti Yl & =150, n<mEl,
1 i

sign(f(%iz) - p(gil)} = (-1)4 sign(f(';i
where q = i2 - il. After the exchange, if R # Y we iterate again using
the reference set Y in place of R. If R = Y then the present p is the
best approximation to f from S, and the algorithm is terminated. For a
description of the exchange and a proof that this algorithm converges
uniformly, see [5].
We now consider uniform restricted range approximations. For
a given f € C(X) we assume that we have two extended real valued
functions u(x) and 2(x) defined on X which satisfy the following
requirements:
(i) #(x) may assume the value -~ but never +w,
(ii) u(x) may assume the value +» but never -,
(iii) A = 2-1(-6) and B = u (=) are open sets in X.
(iv) 2(x) is continuous on X ~ A.
(v) wu(x) is continuous on X ~ B.
(vi) 2(x) < f(x) < u(x) for all x € X.

(vii) o(x) < u(x) for all x € X.




Let S be an n-dimensional Haar subspace of C(X). Let
K={p€s : a(x) < p(x) < u(x) for every x € X}. We say that p* is a
best restricted range approximation to f if p* € K and ||f-p*|| =inf || £-p||.
Taylor [8] has proved that under the above hypotheses on f, £, Ee:nd S,
and if K # ¢, then there exists a unique best restricted range approxi-
mation to f. As long as there is more than a single element in K, then
we have a characterization of the best restricted range approximation to

f as given in the following theorem. Before starting Taylor's charac-

terization theorem, we define for each p € K the following subsets of X.

X,0 = {(x€X: £(x) - p(x) = ||f - p||}
X, = {xeXx: £(x) - plx) = -If - p||}
Xp = {x€X: p(x) = 2(x)}

X, = {xeX:px)s= u(x)}

X, = x, U X, U x,U x .

Restricted Range Characterization Theorem [8]. p*€ K C S is a best

restricted range approximation to f if and only if there exist n + 1

distinct points, Xgs cees X with Xg < X < .0l <X in Xp* satisfying

1 n
l+lo(xl), where a(x) = -1 if x € X_lLJ X_2 and o(x) = +1 if

alx;) = (-1)
®E AV ¥

This characterization is the basis for the following multiple
exchange algorithm due to Gimlin, Cavin and Budge [4] which is the
analog of the multiple exchange Remes algorithm previously described. We
assume f € C(X) is fixed and that u, %, and K have been chosen as
described above. We also assume that we have an arbitrary reference set
} € X with x on which no function

R = {xl, ssug X 1 < Xy < eew <X

n+l n+l

in K interpolates f. Set oy = (-l)i’l, ?1 = f(xi), £ 8 )y voay 0.8 1,
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We begin the first iteration by finding p € S and a real number
such that p(xi) + o;h = ¥i' We next execute an exchange algorithm which
returns a new reference set Y C X, and (possibly) new values for o; and
¥i' If our current reference set R # Y, we iterate again substituting Y
for R« If R = Y, then our present p is in K and satisfies the character-
ization theorem so that p is the best restricted range approximation to
1

We now describe the exchange algorithm. We define the function

sign®* as follows.

sign(f(x)-p(x) if 2(x) < f(x) < u(x) or f(x) # p(x))

sign®(£f(x) -p(x)) ={ +1 if f(x) = 2(x) = p(x)

-1 if f(x) = u(x) = p(x)

"

It can be shown (see [4]) that at each iteration sign*(f(xi) - p(xi))

= -sign®(£(x; ) - p(x; )

sign*(f(x)-p(x))-sign*(f(xi)-p(xi)):p}, T m g Rt Set zo=min{x € X},

el TE S e T Bt zi=inf{x € [xi,xi+l]f\X:

z = max{x € X}. Define E;, M;, m; as follows.

n+l

E, = max {s;*(£(x) - p(x)) - [A]}
. Inx
xe[zl_l,zi

M, = max {s;*(u(x) - p(x))}
[z. .,z.InX
o 8 . |
ﬁi 2 max {Si'(ﬂ(x) - p(x)}
xe[zi_l.zgnx

where S;=sign*(f(x;)-p(x;)). Let §i=max{Ei,Mi,mi}, in case of equality,
choose Qi to be the first largest member of the triple. We define a new trial

A n " -
reference set ?f-{yi, woy ynﬂ} by taking y; to be a point [zi_l.zilnx at which Y

occurs.
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Define y = max{E, M, m} where
E = max{lf(x) - P(X)l - ‘)\‘}
x€X

M = max{p(x) - u(x)},
xeX

m = max{2(x) - p(x)}.
x€X
In case of equality, choose Yy to be the first largest member of this
triple. If for some k, 1 <k <n, ;k = y, then set Y = Q. Otherwise, let
y* be a point at which y occurs, insert y* into Y and delete a §k€1 Y
exactly a was done in the Remes algorithm, preserving sign® alternation.
n+l

We now determine our new sets {oi}i=l and {f.}n+l

¥4 Ef vi € Y 1s a poant

at which E or ﬁi occurs, set o, = sign(f(y;) - p(y;)), and set ?i=f(yi).
If v; is a point at which M or ﬁi occurs, set o, = 0, and set §i=u(yi).

if i is a point at which m or ﬁi occurs, set oy 0, and set ?i=2(yi).

This completes the exchange algorithm.

See Gimlin [4] for a proof that this algorithm does converge to the
best restricted range approximation to f.

As can be done with best uniform approximations, best restricted
range approximations can be computed subject to interpoiatory constraints
The precise formulation of the problem is completely analogous to that
of best uniform approximations with interpolatory constraints. A Remes-
like algorithm for computing restricted range approximations subject to
interpolatory constraints is available and is analogous to the Remes-
like algorithm given above for computing best uniform approximations with
interpolatory constraints. For a complete discussion of this problem see

[2].

ek S—— S—— s e e ———
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CHAPTER 11

Two Adaptive Piecewise Polynomial Curve Fitting Algorithms

In this section we present our algorithms for adaptively finding
smooth piecewise polynomial uniform approximations. First, we define

what we mean by a piecewise polynomial uniform approximation. Suppose

! the function to be approximated, f, is defined on X a compact set of real
; numbers, and [a, b] is the smallest interval containing X. A function p
is a piecewise polynomial approximation to f of degree n if there are m

closed intervals, [a, xl], [xl, xz], Fieaiy [xm_l. b]=Il,I » Ioo such

g
that the restriction of p to Ij is in Hn = {p : p is a polynomial of

{ degree less than or equal to n} for each j. If p restricted to Ij is the
best uniform approximation to £ on X N Ij from Hn for each j, then p is

L8 said to be the best piecewise polynomial uniform approximation to f of

degree n (with respect to the partition Il’ 12, ey Im of [a, bl N X).

T

See [1] and [7] for a theoretical study of this problem where Il’“"Im

are chosen so that E, = max {|f(x) - p(x)|} is the same for all j

] xel.NX
(thereby giving the partitidn containing the minimal number of intervals
needed to achieve this error).

However, in many applications of approximation theory, it is also

desired to find a smooth approximation. If one adds this constraint to

~ g

the above problem, then a best smooth piecewise polynomial uniform
approximation may not exist having the same error on each subinterval.
Even if such an approximaticn does exist, the number of subintervals in

the partition can be unreasonably large. Thus, rather than finding a

11
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best approximation in the above sense, it is reasonable to first stipu-
late an error bound for ||f - p|| and a smoothness constraint on the
piecewise polynomial. Given these constraints, one then should seek a

partition I Sy Im of [a, b] such that m is in some sense minimal or

1°
small and the piecewise polynomial uniform approximation, p, to f with
respect to this partition satisfies both the error tolerance and smooth-
ness demands.

This latter approach is what we will follow. Typically, our
smoothness constraint will be that p E,Cv[a, b] where v = 0, 1 or 2.
Our adaptive curve fitting algorithms will find smooth piecewise poly-
nomial uniform approximations satisfying a prescribed error tolerance and
smoothness requirements by adaptively choosing subintervals. This
partition will be chosen in such a way that the error of the best uniform
(or restricted range approximation) to f on the intersection of each sub-
interval with X from ﬂn subject to interpolatory constraints guaranteeing
the desired smoothﬁess is less than the prescribed error tolerance. At
the same time, effort is made to keep the number of subintervals as small

as possible. In what follows, the points {xi}';'=0 will be called knots,

where Xy = @, X = b, and Ij = [xj-l’ xj].

Algorithm 1

We assume that f € C(X). We use the following notation: n denotes
the degree of the approximating polynomials. SMTH denotes the number of
continuous derivatives desired at the knots (SMTH < n); TOL denotes the
approximation tolerance we wish our piecewise polynomials to satisfy; and

LNGTH denotes an approximate minimum length we will allow for any
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subinterval. We assume these values are all given and fixed. We begin

by choosing :l € X to be the largest point in X which satisfies

(1) X, - a > LNGTH

(2) If p; is the best uniform approximation to f from I on
[a, :1] N X, then sup | £(x) - pl(x)l < TOL.
xe[a,%l]nx
If kl = b, then since Py is a piecewise polynomial meeting our require-
ments, the algorithm is successfully terminated. If no such %l exists,
then the algorithm fails and is terminated with an appropriate error
message. Otherwise, we choose Xy to be the largest extreme point of

f(x)-—pl(x) in (a, %l) N X (which is easily available to us from the

Remes algorithm).

We continue by finding successive intervals [xl, x2], [xz, x3], e
[xm_l, b]l, and polynomial approximations Pps Pgs «+vs P € M tO f so
that pgj)(xi) = pgzi(xi) FOP & 21y 2. ey M 1, e 0, X, oo SNTH,

and so that sup | £(x) - pi(x)l < TOL. This is accomplished as
xe[xi_l,xi]nx

follows.

Suppose we have determined the subintervals [a, xl], [xs %05 ooy

[xi_z, xi-ll' and the approximations Pys Pys +++s P;_;. Assume further

that b - X 12 LNGTH. We now determine an X; and a P meeting the

above requirements. We begin by choosing %i € X to be the largest point

in X which satisfies

(1) % - %,_, > LNGTH,

(2) If p; is the best approximation to f from m,oon [x; ;s :i](j X

(3) (1)

subject to the constraint that Py (% ) = Py_y (%

1-17°
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j =0, 1, ..., SMTH, then sup |£(x) - p.(x!| < TOL.
[x X, InX . i
RELX; 1%
If :i = b, we set X; = %i = b, and the algorithm is successfully termi-
i nated. If no such %i exists, the algorithm fails and is terminated with
an appropriate error message. Otherwise, we choose x; to be the largest
extreme point of f(x) - pi(x) in (xi-l’ :i) n Xx.

Finally, we consider the special case where b - X: 1 € LNGTH. 1In

1
this case we change X: to some xi_l € X, where X: o < xi-l < xi-l < b.
So that b - ii-l > LNGTH. Specifically, we choose ii-l to be a point in

X closest to (b - xi_2)/2 which satisfies

(1) b - %, , > LNGTH,

| (2) If p; is the best approximation to f from I_ on [ii-l’ bIN X
3 ; ; (i), - e K3 )i A
‘ ; subject to the constraint that P (xi-l) = pi-l(xi-l) for
i
: j=0,1, ..., SMTH, then sup |£(x) - p;(x)| < TOL.

xelx; ,,blnx

Again, if we can find such an ;i~1’ then the algorithm is successfully
terminated. If not, the algorithm fails and is terminated with an

appropriate error message.

Algorifhm 2

We assume that f, &, and u € C(X) and satisfy the hypotheses
necessary for restricted range approximation. Let n, SMTH and LNGTH be
as in Algorithm 1. If TOL is the tolerance we wish the approximation to
satisfy, then we make the additional assumption that & and u have been
chosen so that if p is any function satisfying &(x) < p(x) < u(x) for all

x € X, then ||f - p|| < TOL. We begin by choosing ?ile X to be the

T R T ————————
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largest point in X satisfying

(1) X, - a > LNGTH,

(2) There is a best restricted range approximation, pl(x), to f
N
from nn on [a, xl]n X.
N
If X, = b, then the algorithm is successfully terminated. If no such X,
exists, the algorithm fails and is terminated with an appropriate error
message. Otherwise, we choose x, to be the largest extreme point of
N

f(x) - pl(x) in (a, xl) N X.

Proceeding analogously to Algorithm 1, in general, if b - xi—l
> LNGTH, we choose Qi € X to be the largest point in X so that

N
H (1) x, - x,

>
| : { = %;_; > LNGTH,

(2) There is a best restricted range approximation, pi(x), to ¥

n
from Hn on [x. -1’ xi] N X satisfying the constraints

(J) e (j) i
(xi l) P;Z l(xi l), § 20, 1, <o.s SMTH.

If §1'= b the algorithm is successfully terminated. If no such ;i

exists, the'algorithm fails and is terminated with an appropriate error

message. Otherwise, x; is chosen to be the largest extreme point in
"

(xi—l’ xi) n Xx.

§ If b - X:1 < LNGTH, we choose ii-l € X to be a point closest to

f (b - X, )/2 which satisfies

(1) b - xi £ LNGTH

(2) There is a best restricted range approximation, pi(x), to f

from n on [xi l,b](\ X satisfying the constraints pgj (xi l

(j) &
Py. l(xi 1) j Os 1y ¢oey SMTH.
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If we can find an ii-l’ the algorithm is successfully terminated; if

not, the algorithm fails and an appropriate error message is printed.

Remarks

We first note that in algorithm 1 it is in general not necessary
to compute the best approximation on a particular subinterval in order
to conclude that the subinterval is too long. Indeed, at each iteration
of the Remes algorithm we obtain a lower bound for the error of the
best approximation on this particular subinterval, namely |A].
Consequently, if during some iteration of the Remes algorithm |A| > TOL,
we may conclude that the present subinterval is too large and terminate
the Remes algorithm.

In our implementation of these algorithms, the Qi are chosen as
follows. At each step of this iterative procedure we will let & be the
current largest point in X such that requirements (1) and (2) of the
appropriate algorithm are satisfied on [xi-l’ aln X, and we will let D
be the current smallest point in X such that 8 > ¥ and requirement (2)
of the appropriate algorithm fails to be satisfied. We initialize this
process by computing (or attempting to compute) the appropriate best
approximation on [xi-l' bl N X. If this approximation satisfies
requirgment (2), then we set Qi = b and we are done. If the approxi-
mation fails to satisfy (2), we set B = b. Next, let t=min{x € X :

X - X;_; > LNGTH}. If the approximation on [x; ,, t] N X fails to
satisfy (2) then the algorithm cannot meet the desired accuracy and
fails. Otherwise, we set a=t.

In general. we proceed as follows. We let t = inf{x € X : (b-3)/2

N
< x < %}, If this set is empty, we set t=sup{x€ X:a < x < (b-3)/2},
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v
a.

If t = 3 then this procedure has converged and we set ;i =t
Otherwise, we compute (or attempt to compute) the appropriate approxi-
mation on [xi—l’ t]l N X. If this approximation satisfies (2) then we
set a = t. If this approximation fails to satisfy (2) then we set

b = t. We continue this process until g - g is less than some prescribed
tolerance, at which point we accept ; as a good approximation to ;i and
terminate this procedure. We compute the ;i in a manner analogous to
the above.

In an attempt to accelerate the convergence of the above scheme in
curve fitting algorithm 1, we have tried to take advantage of the fact
that corresponding to each a we know the error of approximation on
[xi-l’ g]lﬁ X, call it SMLERR, and corresponding to each B we know a
lower bound for the error of approximation on [xi—l’ g](\ X, call it
BIGERR. We change the above scheme by first setting a =(BIGERR - TOL)
/(BIGERR - SMLERR) and then setting t = inf{xeX : ag+(l-a)g_<_x<g} or,
if this set is empty, we set t = sup{x € X : a $x< ad + (1 - &)g} in
the general iteration described above. Hence, if SMLERR is very close
to TOL, t will be chosen close to 3. Our numerical experience has shown
that this procedure only works well when approximating uniformly smooth
functions and that this algorithm cannot be significantly improved by
allowing the Remes algorithm to run to completion in order to obtain
the true error of approximation for BIGERR.

If f(x) is differentiable on some interval and Xq is an interior
relative extreme point of f(x) - p(x) in this interval, then £1(x,)

= p'(x,). Hence, by "backing off" from X, to x, we hope to force the
0 i i

first derivative of the approximating polynomial and the first

s Al S 5
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derivative of the function being approximated to agree closely at the

‘knots, thereby dampening oscillatory effects otherwise prevalent in this

type of approximation when we require the approximation to be at least
continuously differentiable. Our numerical experience has shown that
this procedure is crucial in order to obtain reasonable approximations.
If we only want our approximations to be continuous at the knots, then
this procedure accomplishes nothing and should be overridden.

In our implementation of these algorithms, we have always assumed
that X is a finite set of points. Because the Remes algorithm can only
find approximations on sets of at least n + 1-SMTH points, one of the
uses of the parameter LNGTH is to insure that every set on which we
approximate contains at least n + 1-SMTH points.

If we set &(x) = f(x) - TOL and u(x) = f(x) + TOL in algorithm 2,
the approximations obtained from algorithm 2 are the same as those
obtained from algorithm 1. However, for a broad class of approximation
problems, the additional computational complexity of algorithm 2
justifies the use of the simpler algorithm 1. We will discuss this
aspect in greater detail in the next section. Algorithm 2 is particu-
larly suited to problems where the desired tolerance varies over the
length of the interval. In the next section we will describe a strategy
which essentially allows us to weight data points which contain signi-

ficant levels of noise by an appropriate choice of 2(x) and u(x).
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CHAPTER III

Numerical Results

Algorithms 1 and 2 have been implemented as FORTRAN programs and
have been tested on Colorado State University's CDC CYBER 172. Care
has been taken to make the programs reasonably efficient and consistent
with each other so that CPU time comparisons should be meaningful. As
examples, the functions elxl on [=1, 1], Isin(x)l on [-m, 7] and /%

on [0, 2] were approximated on 200 equally spaced points with

TOL = .01, SMTH = 2, and N = 6. When using algorithm 2 we chose

u(x) = f(x) + TOL and 2(x)

f(x) - TOL. Each of these examples is
most difficult to approximate by polynomials near x = 0. Consequently,
the algorithms' ability to automatically decrease the length of the
subintervals near x = 0 and then to recover by lengthening them for

x > 0 is tested. As noted above, the approximations computed by the
two algorithms should (and do) agree up to machine accuracy. Below is
a table listing knot locations (subinterval endpoints) and the CPU time
in seconds used by each algorithm to compute the piecewise polynomial

approximation.

19

.
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We have found that in order for these algorithms to be stable, it
is crucial that when computing smooth approximations (SMTH > 0), the
derivative of the approximating polynomial agree closely with the slope
(or approximate derivative) of the function being approximated at the
right endpoint of every subinterval except the last. Wher approximating
on a dense enough subset of an interval, the strategy of choosing X to
be the last interior extreme point of f - p given in the description of
the algorithms seems to be sufficient. However, for more widely spaced
points, the true last interior extreme point of f - p, x%*, generally is
not in X and often, the closest point in X to x%*, which is found by the
Remes algorithm, is not a point at which p' agrees very closely with the
slope of f. Our numerical experience has shown that by setting ?'(x)
to be the derivative of the centered quadratic interpolation of f at x
and choosing X; to be the largest extreme point returned by Remes such
that {¥'(x) - p'(x)} is a minimum we obtain a considerably more stable
algorithm.

For some applications it might be preferable to be able to choose
ahead of time a particular knot location and to specify interpolatory
constraints at these knots.

For example, when approximating |sin(x)|

it might be advantageous to force a knot to be located at x = 0 and to
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require p(0) = 0, p'(0) = -1 as x approaches 0 from the left, and

p'(0) = -1 as x approaches 0 from the right. The modifications to the
algorithms as given necessary to accomplish this would not be extensive
or difficult.

Because uniform approximations weight each data point equally, they
are particularly suited for approximating precise mathematical functions
or for approximating data with noise levels that are very small relative
to the desired accuracy. However, when these algorithms are used to
approximate functions containing considerable levels of noise, the
approximations tend to follow the noise patterns more than is desirable
so that near abrupt changes in the data, the approximations tend to
begin to oscillate and generally it requires several subintervals to
dampen these oscillations.

For example, we were given some experiemtnal data involving the
release of bitumen from oil shale heated to a constant temperature as a
function of time. Because relatively few data points were available,
we filled in the gaps between the data points by linear interpolation so
that we approximated on 200 equally spaced points. Figure 1 is a plot
of the data being approximated, the constraining curves u(x) and %(x),
and the approximation generated by algorithm 2 where N = 6, SMTH = 2,
TOL = 2.5, u(x) = f(x) + TOL, and g(x) = f(x) - TOL. Notice that as
oscillations appear in the data between times of 22 and 34 minutes,

greatly exaggerated oscillations appear in the approximation.
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Figure 1

In order to dampen this effect, we have found that by appropriately
choosing u(x) and g(x) we can improve upon this approximation.
Essentially, we choose u(x) and &(x) such that for each x € X,
max {u(x) - f(x), f(x) - &(x)} = TOL, and u(x) and #(x) are as smooth
as is reasonably possible. Thus, the data points are scattered inside
a band of varying width, but neither boundary is further than TOL from
a data point. When one data point differs sharrly from those on either

side of it, we appropriately choose either u(x) or &(x) to be close to
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this data point. The effect of this choice of u and £ is to tend to
force the approximation toward the more '"believable" side of the data
which results in fewer oscillatory problems. Figure 2 is a plot of the

same example shown in Figure 1, but with u(x) and 2(x) chosen as above.

RESTRICTED RANGE 75 GAL/TON TEMP=425 BITUMEN
N=6, NSMTH=2, TOL=2.500. Knots are indicated by §.
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Figure 2

If a technician collecting data knows the general trend his data
should follow, he can set u(x) and 2(x) accordingly, forcing the

approximation to lie within theoretical bounds instead of just
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prescribing an error tolerance. Or, if he knows that part of his data
is highly accurate relative to the rest, he can easily vary the toler-
ance he is willing to accept accordingly. If he finds that the approxi-
mation generated using one set of restraining curves allows the approxi-
mation to have undesirable characteristics, generally he can alter

these characteristics by appropriately changing u(x) and 2(x).

There is no requirement inherent in these algorithms for the data
points to be equally spaced. By adding more points in regions where
there are quick variations in the function being approximated, smoother
approximations result due to the fact that the algorithm will find more
optimal right end points as they '"back off" from the ki’

Because L2 approximations minimize the effects of normally distri-
buted random noise, we are experimenting with altering algorithm 1 by
computing best 1 approximations in each subinterval instead of best
uniform approximations, the theory for best L2 restricted range
approximations is very difficult and has not been develcped; therefore,
we cannot construct the analog to algorithm 2 using best L2 approxima-
tions. We will report on this work in a future paper.

Recently, John Rice has written several papers in which he describes
an adaptive piecewise polynomial algorithm which uses local Hermite
interpolation instead of uniform approximation on each subinterval to
obtain each polynomial piece (see for example [9]). His algorithm
requires that the first SMTH derivatives or approximate derivatives of f
be available in order to compute approximations which have SMTH contin-
uous derivatives. Rice's adaptive strategy also differs from ours; he

uses a bisection strategy which can be described as follows. First,
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compute the Hermite interpolating polynomial to f on [a, b]. That is,
compute the polynomial which interpolates f and its first SMTH deri-
vatives at both endpoints, as well as interpolating f at k evenly
distributed points in (a, b), where k = DEGREE - 2¢SMTH - 1, and DEGREE
is the degree of the approximating polynomial. Next, measure the error
of approximation using any preselected P norm (p > 1). If the error
is less than TOL, the algorithm terminates, otherwise bisect [a, b]
into two subintervals and check to see if the Hermite interpolating
polynomial on [a, (a + b)/2] differs from f in norm by no more than TOL.
Meanwhile, place the subinterval [(a + b)/2, b] in a "stack" to be
processed later. Continue bisecting subintervals, placing the right
half of the interval on the top of the stack to be processed later and
check the left half to see if the error of approximation by the Hermite
interpolating polynomial is less than TOL. When a subinterval and its
associated approximation are found which meet the desired tolerance,
we accept this approximation as a "piece" of the piecewise polynomial
approximation and continue the algorithm by removing the subinterval
which is currently at the top of the stack and repeating the above on
it unless the stack is empty, at which point terminate the algorithm.
Rice's routine requires the value of the function and its deriva-
tives at very many points in [a, b], even though it may not actually
access these values. His algorithm is particularly suited, then, for
approximating precise mathematical functions for which this data is
readily available. Our algorithms seem more suitable for data reduction
in the sense that instead of storing a large number of data points,

the user could instead store the coefficients of several polynomials
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resulting in a savings of storage space. Our approximations seem
preferable for this purpose since our algorithms do not require any
information about derivatives, and no special configuration of the data
is needed for our adaptive strategy to work.

By using interpolatory constraints on both endpoints of each
subinterval, and interpolating the values of the derivative of f at
these points, we could modify our algorithms to use a bisection adaptive
strategy. However, in order to take greatest advantage of our use of
the best uniform approximation operator as opposed to the Hermite
interpolation operator, we felt that it was preferable to use the
majority of our degrees of freedom for inside subintervals instead of
using them up on interpolation requirements at the endpoints. Essen-
tially, in our algorithms we traded a somewhat faster run time (since
the uniform approximation operator is computationally very slow relative
to the Hermite interpolation operator) for fewer knots, the freedom from
needing to know derivative information, and in algorithm 2, greater

control of the characteristics of the approximations.
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